260 research outputs found

    Inhibitory postsynaptic actions of taurine, GABA and other amino acids on motoneurons of the isolated frog spinal cord

    Get PDF
    The actions of glycine, GABA, α-alanine, β-alanine and taurine were studied by intracellular recordings from lumbar motoneurons of the isolated spinal cord of the frog. All amino acids tested produced a reduction in the amplitude of postsynaptic potentials, a blockade of the antidromic action potential and an increase of membrane conductance. Furthermore, membrane polarizations occurred, which were always in the same direction as the IPSP. All these effects indicate a postsynaptic inhibitory action of these amino acids. When the relative strength of different amino acids was compared, taurine had the strongest inhibitory potency, followed by β-alanine, α α-alanine, GABA and glycine. Topically applied strychnine and picrotoxin induced different changes of postsynaptic potentials, indicating that distinct inhibitory systems might be influenced by these two convulsants. Interactions with amino acids showed that picrotoxin selectively diminished the postsynaptic actions of GABA, while strychnine reduced the effects of taurine, glycine, α- and β-alanine. But differences in the susceptibility of these amino acid actions to strychnine could be detected: the action of taurine was more sensitively blocked by strychnine compared with glycine, α- and β-alanine. With regard to these results the importance of taurine and GABA as transmitters of postsynaptic inhibition on motoneurons in the spinal cord of the frog is discussed

    Minimum-weight perfect matching for non-intrinsic distances on the line

    Full text link
    Consider a real line equipped with a (not necessarily intrinsic) distance. We deal with the minimum-weight perfect matching problem for a complete graph whose points are located on the line and whose edges have weights equal to distances along the line. This problem is closely related to one-dimensional Monge-Kantorovich trasnport optimization. The main result of the present note is a "bottom-up" recursion relation for weights of partial minimum-weight matchings.Comment: 13 pages, figures in TiKZ, uses xcolor package; introduction and the concluding section have been expande

    A Fisher-Rao Metric for curves using the information in edges

    Get PDF
    Two curves which are close together in an image are indistinguishable given a measurement, in that there is no compelling reason to associate the measurement with one curve rather than the other. This observation is made quantitative using the parametric version of the Fisher-Rao metric. A probability density function for a measurement conditional on a curve is constructed. The distance between two curves is then defined to be the Fisher-Rao distance between the two conditional pdfs. A tractable approximation to the Fisher-Rao metric is obtained for the case in which the measurements are compound in that they consist of a point x and an angle α which specifies the direction of an edge at x. If the curves are circles or straight lines, then the approximating metric is generalized to take account of inlying and outlying measurements. An estimate is made of the number of measurements required for the accurate location of a circle in the presence of outliers. A Bayesian algorithm for circle detection is defined. The prior density for the algorithm is obtained from the Fisher-Rao metric. The algorithm is tested on images from the CASIA Iris Interval database

    Intracellular Function of Interleukin-1 Receptor Antagonist in Ischemic Cardiomyocytes

    Get PDF
    Background: Loss of cardiac myocytes due to apoptosis is a relevant feature of ischemic heart disease. It has been described in infarct and peri-infarct regions of the myocardium in coronary syndromes and in ischemia-linked heart remodeling. Previous studies have provided protection against ischemia-induced cardiomyocyte apoptosis by the anti-inflammatory cytokine interleukin-1 receptor-antagonist (IL-1Ra). Mitochondria triggering of caspases plays a central role in ischemia-induced apoptosis. We examined the production of IL-1Ra in the ischemic heart and, based on dual intra/extracellular function of some other interleukins, we hypothesized that IL-1Ra may also directly inhibit mitochondria-activated caspases and cardiomyocyte apoptosis. Methodology/Principal Findings: Synthesis of IL-1Ra was evidenced in the hearts explanted from patients with ischemic heart disease. In the mouse ischemic heart and in a mouse cardiomyocyte cell line exposed to long-lasting hypoxia, IL-1Ra bound and inhibited mitochondria-activated caspases, whereas inhibition of caspase activation was not observed in the heart of mice lacking IL-1Ra (Il-1ra−/−) or in siRNA to IL-1Ra-interfered cells. An impressive 6-fold increase of hypoxia-induced apoptosis was observed in cells lacking IL-1Ra. IL-1Ra down-regulated cells were not protected against caspase activation and apoptosis by knocking down of the IL-1 receptor, confirming the intracellular, receptor-independent, anti-apoptotic function of IL-1Ra. Notably, the inhibitory effect of IL-1Ra was not influenced by enduring ischemic conditions in which previously described physiologic inhibitors of apoptosis are neutralized. Conclusions/Significance: These observations point to intracellular IL-1Ra as a critical mechanism of the cell self-protection against ischemia-induced apoptosis and suggest that this cytokine plays an important role in the remodeling of heart by promoting survival of cardiomyocytes in the ischemic regions

    IL-33 Is Produced by Mast Cells and Regulates IgE-Dependent Inflammation

    Get PDF
    Background: IL-33 is a recently characterized IL-1 family cytokine and found to be expressed in inflammatory diseases, including severe asthma and inflammatory bowl disease. Recombinant IL-33 has been shown to enhance Th2-associated immune responses and potently increase mast cell proliferation and cytokine production. While IL-33 is constitutively expressed in endothelial and epithelial cells, where it may function as a transcriptional regulator, cellular sources of IL-33 and its role in inflammation remain unclear. Methodology/Principal Findings: Here, we identify mast cells as IL-33 producing cells. IgE/antigen activation of bone marrow-derived mast cells or a murine mast cell line (MC/9) significantly enhanced IL-33. Conversely, recombinant IL-33 directly activated mast cells to produce several cytokines including IL-4, IL-5 and IL-6 but not IL-33. We show that expression of IL-33 in response to IgE-activation required calcium and that ionomycin was sufficient to induce IL-33. In vivo, peritoneal mast cells expressed IL-33 and IL-33 levels were significantly lower within the skin of mast cell deficient mice, compared to littermate controls. Local activation of mast cells promotes edema, followed by the recruitment of inflammatory cells. We demonstrate using passive cutaneous anaphylaxis, a mast cell-dependent model, that deficiency in ST2 or antibody blockage of ST2 or IL-33 ablated the late phase inflammatory response but that the immediate phase response was unaffected. IL-33 levels in the skin were significantly elevated only during the late phase

    The IL-1-Like Cytokine IL-33 Is Constitutively Expressed in the Nucleus of Endothelial Cells and Epithelial Cells In Vivo: A Novel ‘Alarmin’?

    Get PDF
    BACKGROUND: Interleukin-33 (IL-33) is an IL-1-like cytokine ligand for the IL-1 receptor-related protein ST2, that activates mast cells and Th2 lymphocytes, and induces production of Th2-associated cytokines in vivo. We initially discovered IL-33 as a nuclear factor (NF-HEV) abundantly expressed in high endothelial venules from lymphoid organs, that associates with chromatin and exhibits transcriptional regulatory properties. This suggested that, similarly to IL-1alpha and chromatin-associated cytokine HMGB1, IL-33 may act as both a cytokine and a nuclear factor. Although the activity of recombinant IL-33 has been well characterized, little is known yet about the expression pattern of endogenous IL-33 in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that IL-33 is constitutively and abundantly expressed in normal human tissues. Using a combination of human tissue microarrays and IL-33 monoclonal and polyclonal antibodies, we found that IL-33 is a novel nuclear marker of the endothelium widely expressed along the vascular tree. We observed abundant nuclear expression of IL-33 in endothelial cells from both large and small blood vessels in most normal human tissues, as well as in human tumors. In addition to endothelium, we also found constitutive nuclear expression of IL-33 in fibroblastic reticular cells of lymphoid tissues, and epithelial cells of tissues exposed to the environment, including skin keratinocytes and epithelial cells of the stomach, tonsillar crypts and salivary glands. CONCLUSIONS/SIGNIFICANCE: Together, our results indicate that, unlike inducible cytokines, IL-33 is constitutively expressed in normal human tissues. In addition, they reveal that endothelial cells and epithelial cells constitute major sources of IL-33 in vivo. Based on these findings, we speculate that IL-33 may function, similarly to the prototype 'alarmin' HMGB1, as an endogenous 'danger' signal to alert the immune system after endothelial or epithelial cell damage during trauma or infection
    • …
    corecore